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A B S T R A C T   

Breast cancer is a major cause of concern on a global scale due to its high incidence rate. It is one of the leading 
causes of death for women, if left untreated. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) 
is increasingly being used in the evaluation of breast cancer. Prior studies neglected to take into account breast 
cancer characteristics and features that might be helpful for distinguishing the four molecular subtypes of breast 
cancer. The use of breast DCE-MRI to identify the molecular subtypes is now the focus of research in breast 
cancer analysis. It offers breast cancer patients a better chance for an early and effective treatment plan. A 
manually annotated dataset of 1359 DCE-MRI images was used in this study, with 70% used for training and the 
remaining for testing. Twelve deep features were extracted from this dataset. The dataset was initially pre
processed through placing the ROIs by a radiologist experienced in breast MRI interpretation, then deep features 
are extracted using the proposed convolutional neural network (CNN). Finally, the deep features extracted are 
classified into molecular subtypes of breast cancer using the support vector machine (SVM). The effectiveness of 
the predictive model was assessed using accuracy and area under curve (AUC) measures. The test was performed 
on unseen held-out data. The maximum achieved accuracy and AUC were 99.78% and 100% respectively, with 
substantially a low complexity rate.   

1. Introduction 

Breast cancer can affect both men and women, but it is more common 
in women, and it is the second leading cause of cancer-related deaths 
globally (Sung et al., 2021). In 2022, the Iraqi cancer board from the 
Ministry of Health (MOH) has reported that between 2000 and 2019, 
nearly 70,000 women received a breast cancer diagnosis (Al-Hashimi, 
2021). The World Health Organization (WHO) reported that breast 
cancer treatment can be highly effective, especially when the cancer is 
detected in early stages by screening tests (Hasan et al., 2022). Screening 
and early diagnosis of breast cancer by a non-invasive imaging modality 
such as mammography, magnetic resonance imaging (MRI), ultrasound, 

etc., can significantly affect patient’s prognosis and prevent cancer 
spreading outside of the breast (Li et al., 2019). 

Breast cancer develops when breast cells grow abnormally resulting 
in a mass of tissue known as a tumor. Like other cancers, breast cancer 
can invade other healthy breast tissues, and can travel through the blood 
stream to the lymph nodes in the axilla and to other parts of the body 
(Feng et al., 2018). There are many symptoms for breast cancer and 
these vary form woman to woman, but the first observable symptom, in 
addition to breast pain, skin changes, nipple discharge, and obvious 
changes in the size and shape of the breast, is typically a lump or area of 
thickened breast tissue. However, a lot of breast cancers are undetect
able without the aid of breast imaging techniques. The selection of an 
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imaging technique for a patient’s diagnosis of breast cancer depends on 
the patient’s age and the density of breast tissue (Iranmakani et al., 
2020). Three breast imaging modalities are currently employed in the 
evaluation of breast lesions. The first standard imaging modality to 
examine the breasts, is the mammography. It is considered the gold 
standard imaging modality in population-based breast cancer screening 
programs, and it is routinely used in the characterization of breast pa
thologies. However, for certain types of breasts, mammograms can be 
challenging to interpret as dense breasts are difficult to scrutinize and 
lesions can be obscured (Iranmakani et al., 2020; Zhao et al., 2015). The 
second imaging modality is ultrasonography (US). Although US exami
nation entails the ability to diagnose breast abnormalities without 
ionizing radiation, it has many limitations including: many breast can
cers are not visible on US, and most of US-detected suspicious findings 
require biopsy (Lee & Houssami, 2016). 

The third imaging modality is MRI, which is a well-recognized im
aging study used for screening patient with high risk of developing 
breast cancer, characterization of an indeterminate breast lesion, and in 
cases of biopsy proven cancer for pre-operative assessment and surgical 
planning (Zhang et al., 2021). In MRI, a number of radio frequency 
pluses and gradients are used to characterize tissues by different relax
ation times to produce various pulse sequences including T1 and T2 
sequences with particular appearance of breast tissues on each sequence 
(Blink, 2004). By considering the information provided by these MRI 
pulse sequences, useful data for breast lesion diagnosis can be extracted 
(Kawahara & Nagata, 2021). In most breast MRI protocols gadolinium 
contrast medium is routinely administered. After the gadolinium is 
injected, the signal intensity in the vessels and certain breast lesions is 
increased rapidly, then followed by a washout of contrast due to diffu
sion into the interstitial space. By tracking the diffusion of the contrast 
material over time, it can study microvascular structure in vivo using 
DCE-MRI technique (Ferris & Goergen, 2016; Ulas et al., 2019). DCE- 
MRI is non-invasive and effective imaging technique that collects a se
ries of T1 weighted images at intervals of few seconds repeatedly over 
the entire coverage of the suspected lesion volume during the intrave
nous injection of gadolinium to study the extent and characteristics of 
the microvasculature in many physiological and pathological instances. 
It has been validated as potential biomarkers which can give insight into 
the biological processes in breast cancer development, understand mo
lecular subtypes of breast cancer, and help the clinicians to build better 
treatment plans (Li et al., 2019; Omer et al., 2019; Ulas et al., 2019). 

To this moment, the growth and spread of breast cancer has not been 
fully understood because cancer cells growth is fueled by normal healthy 
hormones: estrogen and progesterone that keep the female reproductive 
system healthy. Some of the breast cancers are sensitive to these normal 
hormones; where, breast cancer cells have receptors on the outside of 
their cell walls that can bind to specific hormones that circulate 
throughout the body. Progesterone receptor (PR), estrogen receptor 
(ER), and human epidermal growth factor receptor 2 (HER2), which are 
also known as growth receptors, to mediate cancer cell growth signaling 

as shown in Fig. 1. 
Breast cancer molecular subtypes were introduced in 2000 in an 

attempt to explain the differences in clinical outcomes and response to 
treatment among breast cancer patients (Perou et al., 2000). The mo
lecular subtypes of breast cancer can be inferred from the previously 
described three receptors (ER, PR and HER2). The molecular subtype of 
breast cancer along with other criteria like tumor size, stage, grade and 
histologic type, affect patients’ management and prognosis (Coates 
et al., 2015; Vuong et al., 2014). Where, identifying the cancer’s unique 
receptors, resulted in applying the active treatment to block the recog
nized receptors (Schettini et al., 2016). 

In clinical routine, the classification of molecular subtypes of breast 
cancer relies on genomic analysis of biopsy specimens, which is costly 
and time consuming. Several studies have tried to link certain features of 
breast cancer detected on various imaging modalities including breast 
MRI with the molecular subtypes of the tumor in an attempt to non- 
invasively evaluate the molecular biology of the tumor which has an 
impact on selecting patients for specific targeted therapies with the 
potential of improving overall survival. Human perceived imaging fea
tures have the advantage of being easily incorporated into clinical 
practice. Nevertheless, the range of features is constrained, and even 
established features exhibit inter-observer variability (Grimm et al., 
2015). 

Artificial intelligence (AI) is the focus of ongoing research in breast 
cancer detection, classification and management. Several studies 
showed promising results for incorporation of AI tools into breast cancer 
imaging algorithms. AI models have been introduced for prediction of 
malignancy in breast masses depending on certain features extracted 
from dynamic contrast enhanced MRI (Militello et al., 2022). Others 
researchers utilized deep learning models for prediction of sentinel 
lymph node in cases of proved breast cancer to facilitate surgical plan
ning and for prediction of overall prognosis and disease-free survival in 
treated breast cancer patients (Dong et al., 2018; Park et al., 2018). 

The molecular subtype characterization has been the standard 
practice for treating breast cancer. Early research on breast cancer 
subtype classification methods used traditional machine learning 
methods. Recently, there have been several studies for determining the 
breast cancer molecular subtypes preoperatively that can facilitate and 
improve individualized treatment plan. Zhang et al. (2021) compared 
the effectiveness of CNN and convolutional long short term memory 
(CLSTM) to distinguish between three molecular subtypes of breast 
cancer: HR, HER2, and triple-negative (TN). A total of 244 DCE-MRI 
scans were used to train and test the proposed model. The achieved 
mean accuracies were 91% by CLSTM and 79% by CNN. Li et al. (2019) 
proposed an approach for classifying molecular subtypes from DCE-MRI 
breast scans. The region of interest (ROI) of the image was segmented 
with a dynamic threshold after an accurate annotation of the lesions by 
an expert radiologist from DCE-MRI. Then, different types of features 
including texture, morphology, kinetic, and statistics features, were 
obtained from DCE-MRI to verify the connection between the molecular 
subtypes and the image phenotypes. Subsequently, recursive feature 
elimination was applied to find robust and optimal features, as well as 
improving the performance of the proposed model. Consequently, a total 
of 637 DCE-MRI slices were used train and test the gradient boosting 
decision tree classifier, and the achieved recognition precisions for the 
four molecular subtypes of luminal A, luminal B, HER2, and basal-like 
were 91%, 89%, 83%, and 87% respectively. Fan et al. (2017) com
bined the handcrafted features that were derived from DCE-MRI with 
the clinical information to predict four molecular subtypes of breast 
cancer: luminal A, luminal B, HER2 and basal-like. A total of 90 char
acteristics were obtained from DCE-MRI slices, including 2 clinical 
information-based parameters, and 88 texture features associated with 
morphology, as well as dynamic features from tumor and background 
parenchymal enhancement (BPE). These features were reduced to 24 
which represented an optimal feature and had high classification per
formance. A multi-class logistic regression classifier was used to classify Fig. 1. Breast Cancer Receptors.  
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these features and the achieved area under curve (AUC) was 86.9% 
when classifying a dataset that included 60 DCE-MRI breast scans. 
Furthermore, the proposed method was validated by using an inde
pendent dataset with 36 DCE-MRI breast scans, and the achieved AUC 
was 87.2%. Yin et al. (2022) proposed an automated model based on 
using the ResNet18 network to determine the molecular subtypes of 
breast cancer before surgery. The assessment included a comparison 
utilizing three MRI modalities namely, T1 weighted with contrast im
aging, apparent diffusion coefficient (ADC) and T2 weighted imaging. 
Where, T1 weighted with contrast imaging achieved better performance 
in assessing the breast cancer molecular subtypes with other utilized 
modalities yielded AUCs from 0.762 to 0.92. Lafcı et al. (2023) inves
tigated the association between the molecular subtypes of breast and 
radiomic features of DCE-MRI of patient with invasive breast cancer. 
Forty-three radiomic features were extracted using the LIFEX software. 
The maximum yielded accuracy and AUC were 69.4% and 74.6% 
respectively. The study by Militello et al. (2023) proposed various ma
chine learning models for predicting coronary artery impairment using 
radiomics features extracted from Pericoronary adipose tissue features. 
This study allowed for the implementation of a dependable system that 
supports cognitive and decision-making processes in the medical field. 
The extracted radiomic features, as opposed to conventional methods 
that only use clinical features, allowed for a consistent increase in 
classification rates. Experimental results showed that using radiomic 
features alone outperforms using clinical features alone, and that using 
both clinical and radiomic biomarkers together further enhances the 
predictive power of the models. The amount of data that was available 
was this study’s main drawback. 

Most of previous studies used a single post-contrast MRI among the 
multiple DCE-MRI of the breast. The first post-contrast of DCE-MRI is the 
most effective and desirable dynamic for diagnosing breast cancer (Khan 
et al., 2022). Therefore, the combination of pre-contrast and post- 
contrast MRI dynamics may be helpful to improve the molecular sub
type’s classification of breast cancer, and this represents the main 
motivation for developing this study. 

2. Material and method 

The proposed model investigates the efficacy of the CNN to extract 
the deep features from breast DCE-MRI dynamics, the most advised MRI 
sequences for identifying pathologic breasts. Radiant Software were 
used to recognize the coordinates of the ROI. Four deep features vectors 
were combined and utilized to train the SVM classifier. Fig. 2 displays 
the experimental procedures applied in the current study. 

2.1. DCE-MRI dataset 

This study aims to classify the molecular subtypes of breast cancer in 
a dataset of 922 patients at Duke University Hospital in USA (Saha et al., 
2018). Only histopathology proven malignant DCE-MRI patients with a 
clear boundary of mass lesions were chosen for the study, also additional 
patients who did not meet the inclusion criteria, such as patients who 
received chemotherapy or hormonal therapy were excluded. With 
dedicated four-channel breast array coils, 1.5 T and 3 T systems (GE 
medical system and Siemens) were used for all breast DCE-MRI scans. 
The proposed system was trained with a total of 149 breast cancer MRI 
studies, including 74 (49.6%) cases with positive hormone receptors (ER 
and/or PR), 29 (19.5%) cases with positive HER2 receptors, and 47 
(31.5%) cases with triple negative cancers. Additionally, the region of 
interest (ROI) around the breast lesion was outlined manually by a 
consultant radiologist to confirm the provided annotations of the 
downloaded dataset. 

2.2. DCE-MRI breast image preprocessing 

For the proposed approach, the downloaded dataset was obtained 
using various imaging equipment with different pixel spacing and 
spatial resolutions Bilinear interpolation was used to scale all breast 
DCE-MRI scans to the same spatial resolution (Zhu et al., 2019). Addi
tionally, a major con of MRI compared to other medical imaging mo
dalities is the fact that its intensities are not standardized and vary 
between the same and consecutive MRI slices due to MRI scanners. 
Additionally, even though the acquisition protocols for the MRI data 
from the various scanners were the same, the dynamic intensity range of 
the MRI slices varied (Hasan & Meziane, 2016; Hasan et al., 2017). 
Therefore, to reduce the effects of inter-scan and intra-scan variations in 
the intensity of DCE-MRI, all MRI slices were normalized using histo
gram normalization (Al-Shamasneh & Ibrahim, 2023; Hasan et al., 
2022). 

To avoid confounding contributions from noncancerous voxels, a 
region of interest (ROI) around each breast lesion was cropped from all 
breast DCE-MRI slices by an experienced radiologist (N. K. Al-Waely) 
with 10 years of experience in breast cancer diagnosis. The ROI was 
defined by measuring the longest diameter of each breast lesion and 
usually was ranged from 20 to 30 pixels, as well as 5 pixels were added 
around the lesion to include the parenchyma. The selection of ROIs were 
undergone to the set of criteria; the non-enhanced regions such as the 
edge of the lesions, bleeding, necrosis, cystic degeneration and blood 
vessels in the tumor were avoided as much as possible (Hasan et al., 
2023; Zhu et al., 2022; Zhu et al., 2019), as shown in Fig. 3. The data set 
was additionally expanded by transforming and rotating the ROIs 

Fig. 2. Proposed model.  
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images to increase the training size. After augmentation, a total of 1359 
ROI images, including 402 ROIs images with positive hormone re
ceptors, 499 ROIs images with positive HER2 receptors, and 458 ROIs 
images with triple negative cancers. Finally, all ROIs were resized by 
padding with zeros because the deep learning model does not allow for 
variation in the input size of MRI slices. 

2.3. Conventional CNN feature extraction 

CNNs have been proven to be effective when employed for features 
extraction in a variety of domains, including healthcare, and computer 
vision, and were used to improve the classification accuracies (Alrubaie 
et al., 2023; Hasan, AL-Jawad, et al., 2020; Hasan, Jalab, et al., 2020). 
There are two crucial components of the CNN model: the feature 
learning (convolutional and pooling layers) and the classification 
component (fully connected layers) (Govindaswamy et al., 2020). The 
convolutional layer composes several convolutional filters. These filters 
convolve around the input image by moving with a step size named 
stride. Where, the stride can be changed according to the need of the 
problem (Gu et al., 2018; Hasan, AL-Jawad, et al., 2020). After each 
convolutional layer, the dimensions of the input image are decreased 
due to stride process. Therefore, to retrieve the original spatial di
mensions of input volume, zero-padding is used to pad the input volume 
with zeros. Then, applying an element-wise nonlinear activation func
tion on the obtained feature map through the rectified linear unit (ReLU) 
layer (Gu et al., 2018). Subsequently, the rectified feature map is passed 
through the pooling layer for dimensionality (Hasan et al., 2019; Lun
dervold & Lundervold, 2019). Moreover, the max-pooling function is 

used to determine the maximum number in every sub-region of the 
feature maps. A batch normalization layer is used to regulate and speed 
the training process of CNN by normalizing the produced feature maps 
(Hasan et al., 2019). While, the final fully connected layer is used to take 
the feature map from the last convolutional layer and apply weights to 
predict the correct label (Hasan et al., 2019). The Adam optimizer is 
used to decrease the error function of CNN, and produced an extremely 
improved weight when the learning rate was set to 0.001. 

The extremely efficient CNN architecture is based on how the con
volutional layers are connected and how the proper weights are set. The 
proposed CNN architecture for this specific task, included four- 
convolutional layers and three pooling layers, as illustrated in Fig. 4- 
A. The ROI images that were extracted from pre-contrast at t0 and post- 
contrast at (t1, t2, and t3 respectively), was fed independently to the 
proposed CNN. The total of four deep feature subsets of size (1359 × 3), 
were extracted from every breast DCE-MRI (pre-contrast and post- 
contrast dynamics of MRI), as shown in Fig. 4-B. Consequently, these 
subsets were combined into a single feature vector of size (1359 × 12), 
and fed to the classification stage. 

3. Experimental results 

In this study, a total of 1359 malignant breast multiple dynamic MRI 
slices were used to generate sufficient features for classification. The 
average size of breast malignant lesions was 22 mm3 (range, 10–65 
mm3). Using 30% of the breast DCE-MRI slices, classification perfor
mance was evaluated, and the remaining 70% were used for training. 
Due to a variety of factors, such as MR hardware and tissue properties 
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that could conceal normal or abnormal structures and occasionally 
simulate diseases or conditions, the signal intensity of DCE-MRI is sus
ceptible to spurious findings, which could result in missed or incorrect 
diagnoses. Additionally, a large variation in signal intensity may come 
from utilizing different scanners. Therefore, all breast DCE-MRI scans 
were enhanced, and the signal intensity was calibrated by implementing 
an intensity normalization algorithm in the pre-processing step. Then, a 
rectangular box, which represented a ROI, was drawn by an expert 
radiologist to cover completely the breast cancer and followed by 
implementing a zero padding to standardize dimensions of all ROIs ac
cording to the largest ROI. 

The test results demonstrate the effectiveness of the suggested CNN, 
that was used to extract deep features from the cropped pre-contrast 
image which is essential for analysis and comparison, and post- 
contrast (1st, 2nd, and 3rd) images which are essential for diagnosing 
and predicting response to therapy (Khan et al., 2022). In this study, the 
size of deep feature vector from each breast DCE-MRI scan, including 
one pre-contrast MRI image and three post-contrast MRI images, was 12. 
The proposed CNN comprised nine layers as described in Table 1. The 
following parameters were used to train the proposed CNN; the 
maximum number of epochs is 20, the minimum batch size is 64, the 
maximum number of iterations is 1400, and the momentums are 0.9 
with a learning rate of 0.0001. Fig. 5 shows the training progress plots of 
the proposed CNN that has a good performance in obtaining the DF from 
breast single pre-contrast and three post-contrast MRI dynamics. 

The performance of the deep features that are extracted from DCE- 
MRI dynamics to distinguish between three different types of breast 
cancer on DCE-MRI, is evaluated by comparing the following metrices: 
TP, TN, FP, and the FN. Additionally, four more matrices are considered 
to evaluate the proposed model; accuracy (ACC), area under curve 
(AUC), sensitivity (SEN), and specificity (SPE). Where, the SEN and SPE 

indicate the ability of the proposed model to correctly diagnose mo
lecular subtypes of breast cancer. The experimental results depicts that 
the extracted deep features from pre-contrast and post-contrast of MRI 
dynamics, improved the efficacy of diagnosing the molecular subtypes 
of breast cancer, when combined into a single vector. Among the mul
tiple DCE dynamics, most of previous studies focused on using a single 
post-contrast MRI that is especially the first MRI dynamic. Whereas the 
experimental results shows that the combination of pre and post- 
contrast MRI dynamics was superior to individual MRI dynamic, and 
achieved the best predicting response using the SVM classifier with a 
highest ACC and AUC values of 99.78% and 100% respectively, as 
illustrated in Table 2. 

The utilization of the pre-trained model was motivated by its 

Fig. 4. Deep feature extraction using CNN, (A) Diagram representation of CNN feature extraction layers, (B) Proposed structure of deep feature extraction from DCE- 
MRI phases. 

Table 1 
The proposed architecture of CNN.  

Layer Name Kernel filter Kernel Size Feature Map 

Input layer  (102 × 113)  
Convolution layer 1 64 (3 × 3) (102 × 113 × 64) 
Pooling layer 1  (2 × 2) (51 × 56 × 64) 
Convolution layer 2 128 (3 × 3) (51 × 56 × 128) 
Pooling layer 2  (2 × 2) (25 × 28 × 128) 
Convolution layer 3 256 (3 × 3) (25 × 28 × 256) 
Convolution layer 4 128 (3 × 3) (25 × 28 × 128) 
Pooling layer 3  (2 × 2) (12 × 14 × 128) 
Fully connected layer  (1 × 3) (1 × 3)  

Fig. 5. The training plots of the proposed CNN on pre-contrast and post- 
contrast at (t1, t2, and t3 respectively). 

Table 2 
Achieved results by the proposed CNN as a feature extractor using SVM 
classifier.  

Features DF-Pre- 
contrast 

DF-Post- 
contrast 1 

DF-Post- 
contrast 2 

DF-Post- 
contrast 3 

Combined 
Features 

Accuracy 99.63 99.34 99.04 98.90 99.78 
TP 398 394 393 392 399 
TN 956 956 953 952 957 
FP 11 1 3 3 0 
FN 4 8 10 12 3 
Sensitivity 99.00 98.01 97.51 97.02 99.25 
Specificity 99.90 99.9 99.68 99.58 100 
AUC 100 100 100 100 100  
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performance on many medical tasks such as AlexNet (Russakovsky et al., 
2015), SqueezeNet (Iandola et al., 2016) and GoogLeNet (Zhou et al., 
2016). Therefore, in this study the acquired knowledge of these pre- 
trained models is exploited to extract feature from pre-contrast and 
post-contrast MRI dynamics of the utilized dataset and compared their 
performances with the proposed CNN in this study, as presented in 
Table 3. Accordingly, AlexNet is composed of 5 convolutional layers 
ending with 3 fully connected layers (Yuan & Zhang, 2016). While, 
SqueezeNet includes 18 squeeze convolutional layer and 1000 classes in 
the output layer (Elharrouss et al., 2022). Moreover, GoogleNet includes 
22 convolutional layers with 27 pooling layers and 1000 classes in the 
output layer (Zhou et al., 2016). When comparing the achieved results of 
the existing methods with the proposed CNN, the proposed method is 
better than the pre-trained networks in terms of the average classifica
tion accuracy, feature dimensions, and number of layers. Where, the 
maximum achieved accuracy of 99.78 is achieved by using feature 
vector of 12 predictors, and network of 9 layers. 

Additionally, ANOVA (one-way analysis of variance) is used to 
evaluate the discriminatory power of the extracted deep features based 
on the F-statistic and P-value. The F-statistic, which is used to determine 
whether the ratio of these variance estimates is significantly greater than 
1, is described as a ratio between-group variance to within-group vari
ance (Hasan & Meziane, 2016). Where, larger F-statistic indicates the 
differences between-group variance is larger than within-group vari
ance. This can be interpreted that there is a statistically significant dif
ference in the group means. P-value, on the other hand, is the probability 
that the test statistic will be at least equal to or less than the test’s critical 
value (5% or 1%). The feature will be significant if the P-value for the 
larger F-statistic value is lower than the critical value (Kim, 2017). 
Table 4 shows that all the extracted features have P-values that are less 
than 0.0001. This indicates that all the extracted features are significant 
but from the associated F-statistics show that the degree of significance 
are varied among the extracted features. Where, some of the extracted 
features have large F-statistics such as predictor 2 and predictor 3 that 
were extracted from pre-contrast MRI, and some of the extracted fea
tures have small F-statistics such as predictor 3 from post-contrast at t2 
and t3 MRI respectively. Although, the highest accuracy (99.78%) was 
achieved by combining the extracted features from pre and post contract 
MRI dynamics, the achieved accuracy by using only the pre-contrast is 
also high (99.63%) and decreased by (0.15%) from the highest accuracy, 
as demonstrated in Table 3. Thus, the pre-contrast of breast MRI can be 
utilized efficiently to classify the molecular subtypes of breast cancer. 
Classifying the molecular subtypes without the need for administering 
gadolinium contrast would have a great impact on the management of 
patients with breast cancer as it would decrease the cost burden on the 
patient, decrease the time of MRI exam, increase the number of patients 
that can be examined per day and eliminate the potential side effects 

after administering the MRI contrast agent like allergy, headache and 
nausea (Behzadi et al., 2018). 

Furthermore, patients with certain types of breast cancers are treated 
with chemotherapy prior to definitive surgery and it has been shown 
that the hormone receptor status which defines the molecular subtype 
may change during the time course of such treatment (Niikura et al., 
2012; Niikura et al., 2016). Thus, assessment of the molecular type in 
residual or recurrent breast cancer by non-enhanced MR exam without 
the need for multiple invasive biopsies or frequent administrations of 
gadolinium contrast would permit more tolerable and efficient man
agement plan for the patient. 

3.1. Comparison with existing state-of-the art 

To validate the effectiveness of the proposed method, Table 5 sum
marizes previous studies that investigated the molecular subtype’s 
classification of DCE-MRI breast cancer. Zhang et al. (2021) study was 
developed to distinguish between three breast cancer molecular sub
types using deep learning algorithms such as CNN and a recurrent CNN. 
The achieved accuracies of CNN and CLSTM were 79% and 91% 
respectively when evaluated with 244 DCE-MRI breast scans. Li et al. 
(2019) proposed a method for identifying molecular subtypes from 
phenotypes in DCE-MRI breast images using radiomics. Texture, dy
namic kinetics, morphology and statistics features were among the 

Table 3 
Comparisons using the same breast DCE-MRI dataset.  

Methods DF-Pre-contrast DF-Post-contrast 1 DF-Post-contrast 2 DF-Post-contrast 3 Combined Features 

AlexNet (Russakovsky et al., 2015) 
Accuracy 91.04 90.86 87.95 86.55 92.62 
Features Dimensions 4096 4096 4096 4096 16,384  

SqueezeNet [33] 
Accuracy 93.95 93.44 91.54 89.88 94.51 
Features Dimensions 1000 1000 1000 1000 4000  

GoogLeNet (Zhou et al., 2016) 
Accuracy 90.23 89.33 85.11 82.34 90.38 
Features Dimensions 1000 1000 1000 1000 4000  

Proposed CNN 
Accuracy 99.63 99.34 99.04 98.90 99.78 
Features Dimensions 3 3 3 3 12  

Table 4 
ANOVA test to determine the significance of the extracted features among pre- 
and post-contrast dynamics.  

Deep Features F-Statistics P-value 

Pre-contrast (t0) 
Predictor 1  103.8  <0.0001 
Predictor 2  1215.5  <0.0001 
Predictor 3  1223.2  <0.0001  

Post-contrast (t1) 
Predictor 1  114.9  <0.0001 
Predictor 2  99.1  <0.0001 
Predictor 3  60.7  <0.0001  

Post-contrast (t2) 
Predictor 1  91.8  <0.0001 
Predictor 2  143.5  <0.0001 
Predictor 3  49.3  <0.0001  

Post-contrast (t3) 
Predictor 1  69.8  <0.0001 
Predictor 2  83.8  <0.0001 
Predictor 3  43.2  <0.0001  
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features that were taken into consideration. The achieved accuracy was 
87% when evaluated with 637 DCE-MRI scans. Fan et al. (2017) studied 
the role of features derived from DCE-MRI and incorporated clinical 
information such as the age and menopausal status, to predict the mo
lecular subtypes of breast cancer. 

The results of predication model revealed that the achieved overall 
classification performance with an AUC value was 86.9%. Yin et al. 
(2022) investigated the efficacy of multi-parametric MRI-based CNN for 
the preoperative assessment of breast cancer molecular subtypes. The 
yielded AUC values were between 76.2% and 92%, for separating each 
molecular subtypes of breast cancer of a dataset that included 136 DCE- 
MRI scans. Finally, Lafcı et al. (2023) studied the association between 
the molecular subtypes of breast cancer and radiomic features of DCE- 
MRI scans. The maximum achieved accuracy and AUC were 69.4% 
and 74.6% respectively when classifying a dataset of 73 DCE-MRI scans. 

The accuracy of the suggested method performed better than that of 
earlier studies. This demonstrates that the proposed CNN is effective in 
extracting the most efficient features that can be used for identifying the 
molecular subtypes of breast cancer by utilizing DCE-MRI modality. 
Furthermore, the proposed method succeeded in discriminating the 
three intrinsic molecular subtypes of the breast accurately from only the 
pre-contrast phase without need for gadolinium injection. This could be 
a helpful auxiliary tool to help radiologists interpret DCE-MRI scans in 
their own subjective way, and help to diagnose patients who have severe 
allergic to gadolinium-based contrast media. 

4. Conclusion 

In this study, a new CNN model was proposed for the extraction of 
efficient features from DCE-MRI of the breast after being analyzed by 
radiologists in a preprocessing stage. The experimental results depict 
that the proposed model may significantly enhance DCE-MRI’s capa
bility to identify the molecular subtypes of breast cancer. Additionally, 
the recent studies showed that the administered gadolinium accumu
lates with higher concentrations in certain body tissues including the 
brain, bone, skin, and liver. Therefore, the potential of the proposed 
model provides the contrast-free examination with high accuracy by 
using the deep features of unenhanced breast dynamic of DCE-MRI scan 
to differentiate among molecular subtypes of breast cancer. However, 
the manual delineation of ROI from DCE-MRI scans by experienced 
radiologist represents the main limitation of the proposed model. Thus, 
we recommend future research focusing on placing the ROI automati
cally without the need for the human intervention. 
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