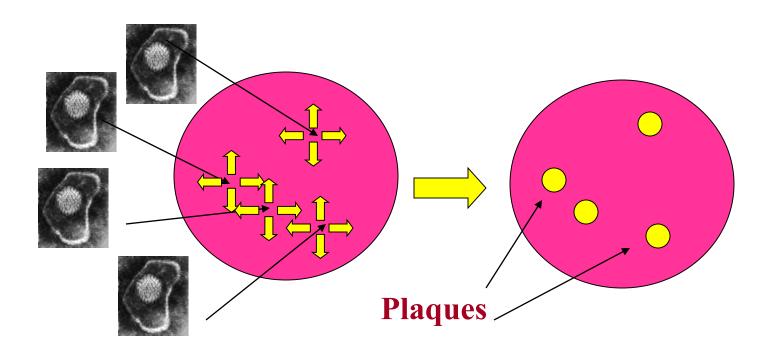


Practical Virology Lab-6-Virus Titration

Prof. Dr. Arwa Mujahid Al-Shuwaikh Microbiology Department College of Medicine – Al-Nahrain University

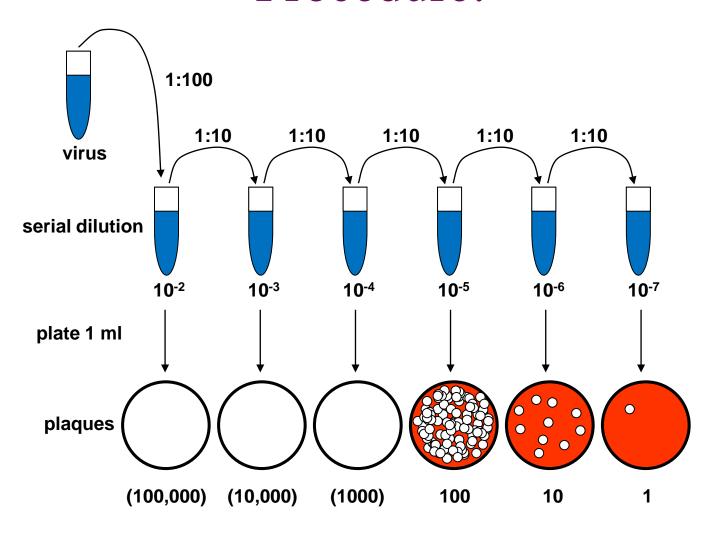
Assay of viruses Titration:

□ Biological


- A. Plaque assay
- B. Endpoint Method: TCID₅₀, EID₅₀, & LD₅₀.

Physical

- A. Hemagglutination.
- B. Direct particle count.


Virus Titration by Biological Methods

A- Plaque Assay

Count plaques(plaque forming unit/ml)

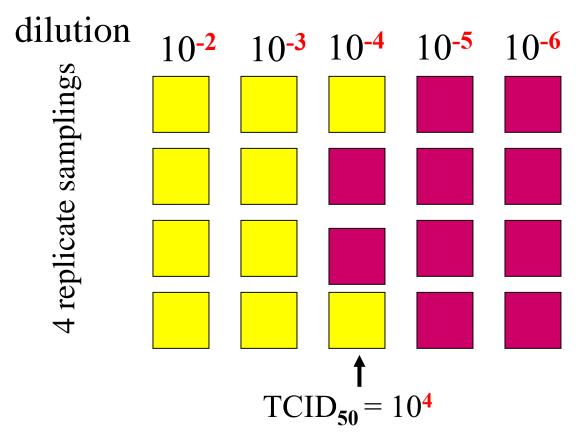
Procedure:

Titer = 1×10^7 pfu/ml

Plaque assay applications:

□Identification of the virus by very specific anti-sera.

□Quantitation of the virus titer in the sample (Plaque forming unit) = PFU


Plaque assays used to quantitate a viral stock.

Virus Titration by Biological Methods

B- TCID 50 Tissue Culture Infectious Dose 50%:

- 1. Prepare a monolayer of cell culture in flat bottomed wells of a microtiter plate.
- 2. Do serial dilution of the sample that contain the virus (e.g.10 fold dilution).
- 3. Inoculate each dilution in a well.
- 4. Incubate at 37°C &daily examine for the appearance of CPE.
- 5. Determine the infectivity of the virus using Karber method, (TCID 50 equals to the reciprocal of dilution that causes CPE in 50% of the cells in the monolayer in the well).

Procedure:

50% Tissue culture infectious dose

Endpoint Method: TCID50, EID50, & LD50.

- TCID₅₀: is defined as that reciprocal of dilution of virus per unit volume required to infect & produce CPE in 50% of the cell cultures inoculated.
- The EID_{50} : is defined as the reciprocal of that dilution of virus per unit volume that results in death (or other observable endpoint) in 50% of the inoculated eggs.
- The LD_{50} : is defined as the reciprocal of that dilution of virus per unit volume that will kill 50% of the inoculated animals.

Factors that influence the LD_{50}

- The age of the animal.
- The health status of the animal.
- The strain of the animal.
- The route of inoculation.
- The strain and passage of the infecting virus.
- The size of the inoculums.
- Smaller dilution interval & the larger the number of animals per experimental group, the greater the accuracy of the results obtained.

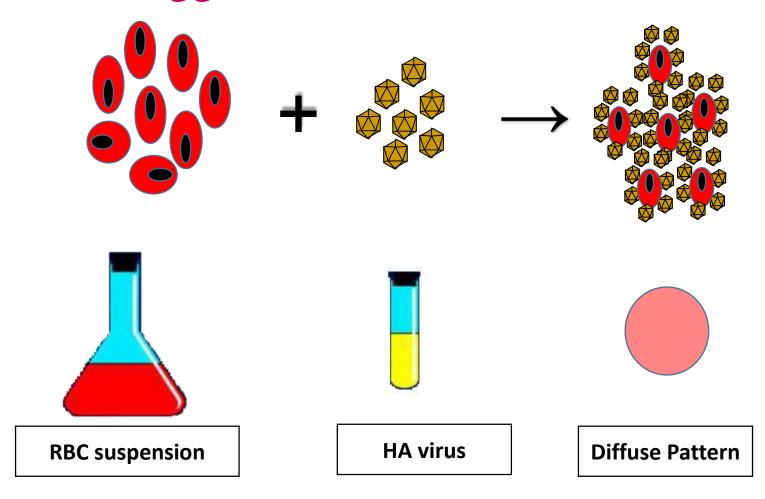
Virus Titration by Physical Methods:

A. Hemagglutination.

Biological phenomena.

Hemagglutination (HA) test.

Virus titration.


Serological test.

Hemagglutination Inhibition (HI) test.

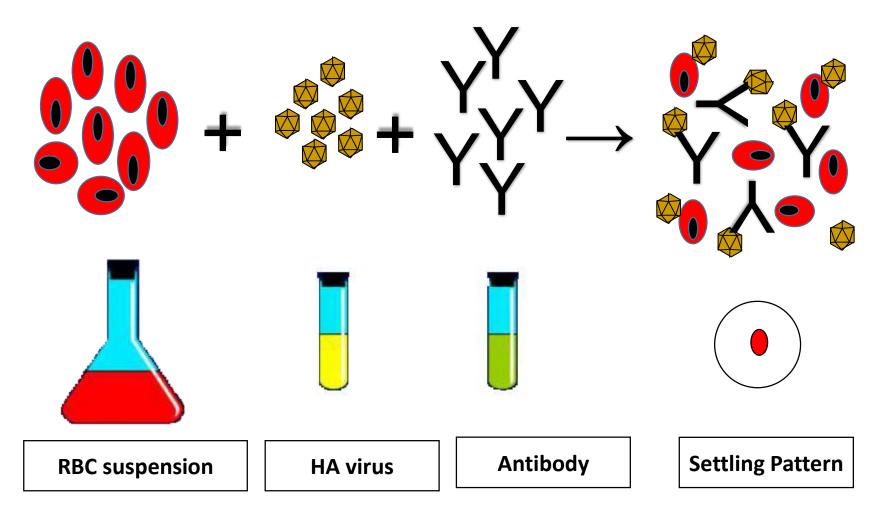
Antibody titration

B. Direct particle count.

Virus Titration by Physical Methods: A. Haemagglutination (HA) test.

HA test procedure:

Materials	(a)	well I	Vo.							
(ml)	1	2	3	4	5	6	7	8	9	10
Saline	0.45	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Virus	0.05	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	-
Dilution	1:10	1:20	1:40	1:80	1:160	1:320	1:6401	:1280	1:256	0 con
0.5%RBC	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25


Interpretation of HA test:

HA titer = the reciprocal of highest dilution of virus giving complete HA.

	2	4	8	16	32	64	128	256
1								
2						•	•	
3							0	
4		•	•		•	•	•	
5	•	•		•	•	•		
6					0	•	•	
7	•	•	•	•		•	•	
	_	\sim	\sim	\sim	_		•	
9	•	0	0					
10	•	•	•	•		•	•	
+C						•	•	
CC		•	•		•	•	•	

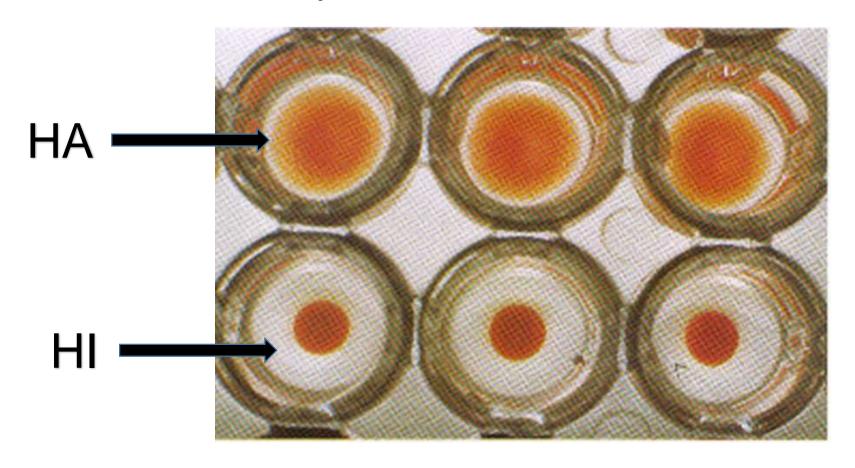
Row No.	Endpoint
1	1:128
2	1:32
3	1:64
4	Neg.
5	Neg.
6	1:16
7	Neg.
8	1:32
9	1:128
10	Neg.

Haemagglutination inhibition (HI) test:

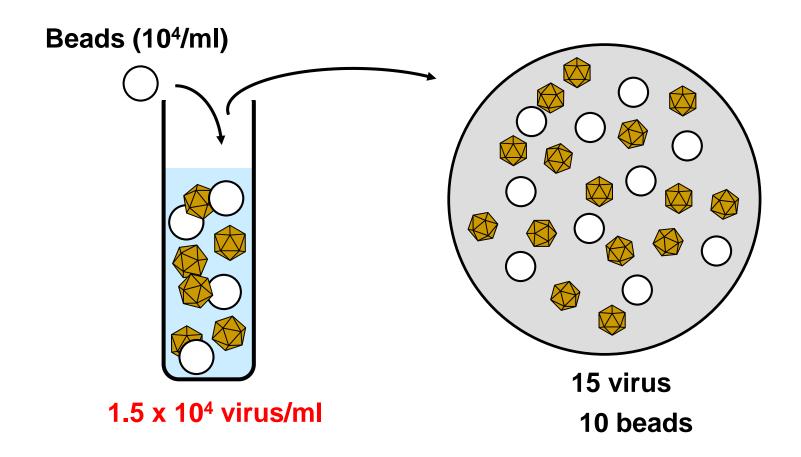
HI test procedure:

Materials		well	No.							
(ml)	1	2	3	4	5	6	7	8	9	10
Saline	0.9	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Serum	0.1	0.25	0.25	0.25	0.25	0.25	0.25		0.25	
Dilution	1:10	1:20	1:40	1:80 ′	1:160 1	1:320 1	1:640	11 0 5	**	
Virus	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	•	
0.5%RBC	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25		0.25

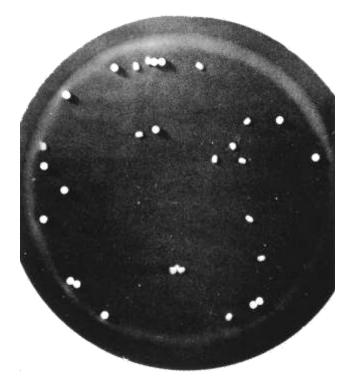
Interpretation of HI test:


HI titer is the reciprocal of the highest dilution of the patient's serum which

shows complete inhibition of agglutination.


	2	22.4	0	16	22	61	100	256	
	2	4	_	-	-	64	128	256	
1				igotimes	$^{\odot}$	(ullet)			
2	•	•	•	•	•				
3	•	•	•	•					
4	•	•	()	•	0				
5	•	•	•	•	•	•			
6									
7									
8	•	•	•	•	0				
9									
10									
+C	•	•	•	•	•				
CC	•	•	•	•	•	•	•	•	

Row No.	Endpoint
1	1:64
2	1:32
3	1:16
4	1:32
5	1:64
6	Neg.
7	Neg.
8	1:32
9	Neg.
10	Neg.


Haemagglutination Vs. Haemagglutination Inhibition Analysis of the Results:

Virus Titration by Physical Methods: B. Direct particle count.

Direct particle count

Direct electron microscopic particle count. An electron micrograph of a spray droplet containing 15 latex beads (spheres) and 14 vaccinia virus particles (slightly smaller, brick-shaped particles). (From Fields Vriology (2007) 5th edition, Knipe, DM & Howley, PM, eds, Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia Fig. 2.8)

SOME POINTS TO REMEMBER

Infectivity:

□Not every released particle is infectious.

Assays:

- □ Detect every particle (e.g. electron microscope)
- □ Detect infectious particles only (e.g. plaque assay)

